TRINOMIO CUADRADO PERFECTO
Ejemplo 1;
a2 – 2ab + b2
Raíz cuadrada de a2 = a
Raíz cuadrada de b2 = b
Doble producto sus raíces
(2 X a X b) 2ab (cumple)
R: (a – b) 2
Ejemplo 2:
49m 6– 70 am3n2 + 25 a2n4
Raíz cuadrada de 49m6 = 7m3
Raíz cuadrada de 25a2n4 = 5an2
Doble producto sus raíces
(2 X 7m3 X 5a2n2) = 70am3 n2 (cumple)
R: (7m – 5an2)
Ejemplo 3:
9b2 – 30 ab + 25a2
Raíz cuadrada de 9b2 = 3b
Raíz cuadrada de 25 a2= 5a
Doble producto sus raíces
(2 X 3b X 5a) = 30ab (cumple)
R: (3b - 5a) 2
CASO ESPECIAL
Ejemplo 1:
a2 + 2a (a – b) + (a – b) 2
Raíz cuadrada de a2 = a
Raíz cuadrada de (a – b) 2 = (a – b)
Doble producto sus raíces
(2 X a X (a – b) = 2a(a – b) (cumple)
R: (a + (a – b)) 2
(a + a – b) = (2a –b) 2
Ejemplo 2:
En el siguiente video se realiza la explicación del tercer caso de factorización por parte del ING. SANTIAGO VÁSQUEZ docente de la UNIDAD EDUCATIVA ACMIL SAN DIEGO
(x + y) 2 – 2(x+ y)(a + x) + (a + x) 2
Raíz cuadrada de (x + y)2 =(x + y)
Raíz cuadrada de (a + x) 2 = (a + x)
Doble producto sus raíces
(2 X (x + y) X (a + x)) = 2(x +y)(a + x) (cumple)
R: ((x +y) – (a + x)) 2
(x + y – a – x) 2 = (y – a) 2
En el siguiente video se realiza la explicación del tercer caso de factorización por parte del ING. SANTIAGO VÁSQUEZ docente de la UNIDAD EDUCATIVA ACMIL SAN DIEGO
No hay comentarios:
Publicar un comentario